Tag Archives: MD5

NTP Authentication at Juniper ScreenOS

Yes, ScreenOS is end-of-everything (EoE), but for historical reasons I still have some of them in my lab. ;D They simply work, while having lots of features when it comes to IPv6 such as DHCPv6-PD. However, using IPv6-only NTP servers is beyond their possibilities. :(

Anyway, I tried using NTP authentication with legacy IP. Unfortunately, I had some issues with it. Not only that they don’t support SHA-1 but MD5, this MD5 key was also limited in its length to 16 characters. Strange, since ntp-keygen per default generates 20 ASCII characters per key. Let’s have a look:

Continue reading NTP Authentication at Juniper ScreenOS

Infoblox Grid Manager NTP Authentication

Configuring NTP authentication on the Infoblox Grid Master is quite simple. Everything is packed inside the single “NTP Grid Config” menu. You just have to enter the NTP keys respectively key IDs and enable authentication on the appropriate servers. In the case of incorrect authentication values an error message is logged. Very good, since this is not the case on some other network security devices (Palo, Forti).

Too bad that it only supports MD5 while SHA-1 should be used instead of.

Continue reading Infoblox Grid Manager NTP Authentication

Fortinet FortiGate (not) using NTP Authentication

A security device such as a firewall should rely on NTP authentication to overcome NTP spoofing attacks. Therefore I am using NTP authentication on the FortiGate as well. As always, this so-called next-generation firewall has a very limited GUI while you need to configure all details through the CLI. I hate it, but that’s the way Fortinet is doing it. Furthermore the “set authentication” command is hidden unless you’re downgrading to NTPv3 (?!?) and it only supports MD5 rather than SHA-1. Not that “next-generation”!

Finally, you have no chance of knowing whether NTP authentication is working or not. I intentionally misconfigured some of my NTP keys which didn’t change anything in the NTP synchronization process while it should not work at all. Fail!

Continue reading Fortinet FortiGate (not) using NTP Authentication

Packet Capture: Network Time Protocol (NTP)

What’s the first step in a networker’s life if he wants to work with an unknown protocol: he captures and wiresharks it. ;) Following is a downloadable pcap in which I am showing the most common NTP packets such as basic client-server messages, as well as control and authenticated packets. I am also showing how to analyze the delta time with Wireshark, that is: how long an NTP server needs to respond to a request.

Continue reading Packet Capture: Network Time Protocol (NTP)

My CCNP TSHOOT Lab: The Overall Picture

During the last few weeks I published a couple of blogposts concerning routing protocols such as BGP, OSPFv3, and EIGRP. (Use the “Cisco Router” tag on my blog to list all of them.) They are all part of my current Cisco lab that I am using for my CCNP TSHOOT exam preparation. While I depicted only the details of the routing protocols in those blogposts, I am showing my overall lab with all of its Cisco IOS configs here. Just to have the complete picture. There are a couple of not-yet-blogged configs such as VRRP, GLBP, NTP authentication, embedded event manager (EEM), or route-maps and distribute/prefix lists though.

Continue reading My CCNP TSHOOT Lab: The Overall Picture

EIGRP Capture

And again: Here comes a pcapng capture taken for the dynamic routing protocol EIGRP. If you want to dig into EIGRP messages, download the trace file and browse around it with Wireshark. Since I used both Internet Protocols (IPv6 and legacy IP), MD5 authentication, route redistribution, etc., you can find many different messages in it.

Continue reading EIGRP Capture

Dual-Stack EIGRP Lab

Yet another routing protocol I played with in my lab. ;) This time: EIGRP, Enhanced Interior Gateway Routing Protocol, the proprietary distance-vector routing protocol developed by Cisco, which is now public available (RFC 7868). However, no third-party products in here but only Cisco routers. I am using named EIGRP for both Internet Protocols, IPv6 and legacy IP, along with MD5 authentication and redistribution from OSPF.

Continue reading Dual-Stack EIGRP Lab

OSPFv2 Capture

I already had an OSPFv2 for IPv4 lab on my blog. However, I missed capturing a pcap file in order to publish it. So, here it is. Feel free to have a look at another small lab with three Cisco routers and OSPFv2. Just another pcapng file to practise some protocol and Wireshark skills.

Continue reading OSPFv2 Capture

MP-BGP Capture

For those who are interested in analyzing basic BGP messages: I have a trace file for you. ;) It consists of two session establishments as I cleared the complete BGP session on two involved routers for it. Refer to my previous blogpost for details about the lab, that is: MP-BGP with IPv6 and legacy IP, neighboring via both protocols as well, with and without password. The involved routers were 2x Cisco routers, one Palo Alto Networks firewall, and one Fortinet FortiGate firewall.

Continue reading MP-BGP Capture

Basic MP-BGP Lab: Cisco Router, Palo Alto, Fortinet

While playing around in my lab learning BGP I configured iBGP with Multiprotocol Extensions (exchanging routing information for IPv6 and legacy IP) between two Cisco routers, a Palo Alto Networks firewall, and a Fortinet FortiGate firewall. Following are all configuration steps from their GUI (Palo) as well as their CLIs (Cisco, Fortinet). It’s just a “basic” lab because I did not configure any possible parameter such as local preference or MED but left almost all to its defaults, except neighboring from loopbacks, password authentication and next-hop-self.

Continue reading Basic MP-BGP Lab: Cisco Router, Palo Alto, Fortinet

SSH Key Fingerprints

As a network administrator I know that there are SSH fingerprints. And of course I know that I must verify the fingerprints for every new connection. ;) But I did not know that there are so many different kinds of fingerprints such as md5- or sha-hashed, represented in base64 or hex, and of course for each public key pair such as RSA, DSA, ECDSA, and Ed25519. Uh, a bit too complicated at a first glance. Hence I draw a picture.

Continue reading SSH Key Fingerprints