Tag Archives: Cisco Router

My CCNP TSHOOT Lab: The Overall Picture

During the last few weeks I published a couple of blogposts concerning routing protocols such as BGP, OSPFv3, and EIGRP. (Use the “Cisco Router” tag on my blog to list all of them.) They are all part of my current Cisco lab that I am using for my CCNP TSHOOT exam preparation. While I depicted only the details of the routing protocols in those blogposts, I am showing my overall lab with all of its Cisco IOS configs here. Just to have the complete picture. There are a couple of not-yet-blogged configs such as VRRP, GLBP, NTP authentication, embedded event manager (EEM), or route-maps and distribute/prefix lists though.

Continue reading My CCNP TSHOOT Lab: The Overall Picture

EIGRP Capture

And again: Here comes a pcapng capture taken for the dynamic routing protocol EIGRP. If you want to dig into EIGRP messages, download the trace file and browse around it with Wireshark. Since I used both Internet Protocols (IPv6 and legacy IP), MD5 authentication, route redistribution, etc., you can find many different messages in it.

Continue reading EIGRP Capture

Dual-Stack EIGRP Lab

Yet another routing protocol I played with in my lab. ;) This time: EIGRP, Enhanced Interior Gateway Routing Protocol, the proprietary distance-vector routing protocol developed by Cisco, which is now public available (RFC 7868). However, no third-party products in here but only Cisco routers. I am using named EIGRP for both Internet Protocols, IPv6 and legacy IP, along with MD5 authentication and redistribution from OSPF.

Continue reading Dual-Stack EIGRP Lab

OSPFv3 with IPsec Authentication

Here comes a small lab consisting of three Cisco routers in which I used OSPFv3 for IPv6 with IPsec authentication. I am listing the configuration commands and some show commands. Furthermore, I am publishing a pcapng file so that you can have a look at it with Wireshark by yourself.

Continue reading OSPFv3 with IPsec Authentication

OSPFv2 Capture

I already had an OSPFv2 for IPv4 lab on my blog. However, I missed capturing a pcap file in order to publish it. So, here it is. Feel free to have a look at another small lab with three Cisco routers and OSPFv2. Just another pcapng file to practise some protocol and Wireshark skills.

Continue reading OSPFv2 Capture

MP-BGP Capture

For those who are interested in analyzing basic BGP messages: I have a trace file for you. ;) It consists of two session establishments as I cleared the complete BGP session on two involved routers for it. Refer to my previous blogpost for details about the lab, that is: MP-BGP with IPv6 and legacy IP, neighboring via both protocols as well, with and without password. The involved routers were 2x Cisco routers, one Palo Alto Networks firewall, and one Fortinet FortiGate firewall.

Continue reading MP-BGP Capture

Basic MP-BGP Lab: Cisco Router, Palo Alto, Fortinet

While playing around in my lab learning BGP I configured iBGP with Multiprotocol Extensions (exchanging routing information for IPv6 and legacy IP) between two Cisco routers, a Palo Alto Networks firewall, and a Fortinet FortiGate firewall. Following are all configuration steps from their GUI (Palo) as well as their CLIs (Cisco, Fortinet). It’s just a “basic” lab because I did not configure any possible parameter such as local preference or MED but left almost all to its defaults, except neighboring from loopbacks, password authentication and next-hop-self.

Continue reading Basic MP-BGP Lab: Cisco Router, Palo Alto, Fortinet

Generating SSHFP Records Remotely

Until now I generated all SSHFP resource records on the SSH destination server itself via ssh-keygen -r <name>. This is quite easy when you already have an SSH connection to a standard Linux system. But when connecting to third party products such as routers, firewalls, whatever appliances, you don’t have this option. Hence I searched and found a way to generate SSHFP resource records remotely. Here we go:

Continue reading Generating SSHFP Records Remotely

Basic Cisco Configuration

Following is a list of the most common Cisco device configuration commands that I am using when setting up a router or switch from scratch, such as hostname, username, logging, vty access, ntp, snmp, syslog. For a router I am also listing some basic layer 3 interface commands, while for a switch I am listing STP and VTP examples as well as the interface settings for access and trunk ports.

This is not a detailed best practice list which can be used completely without thinking about it, but a list with the most common configurations from which to pick out the once required for the current scenario. Kind of a template. Of course with IPv6 and legacy IP.

Continue reading Basic Cisco Configuration

CCNP SWITCH Lab show commands

Second post of this little series. While I was using my CCNP SWITCH lab for testing many different protocols, I “showed” and saved the output of those protocols as well. Refer to the lab overview of my last post in order to understand those outputs.

I basically saved them as a reference for myself in case I am interested in the information revealed by them. I won’t explain any details of the protocols nor the outputs here. Just many listings. Fly over them and reflect yourself whether you would understand anything. ;) Here we go:

Continue reading CCNP SWITCH Lab show commands

Wireshark Layer 2-3 pcap Analysis w/ Challenges (CCNP SWITCH)

While preparing for my CCNP SWITCH exam I built a laboratory with 4 switches, 3 routers and 2 workstations in order to test almost all layer 2/3 protocols that are related to network management traffic. And because “PCAP or it didn’t happen” I captured 22 of these protocols to further investigate them with Wireshark. Oh oh, I remember the good old times where I merely used unmanaged layer 2 switches. ;)

In this blogpost I am publishing the captured pcap file with all of these 22 protocols. I am further listing 46 CHALLENGES as an exercise for the reader. Feel free to download the pcap and to test your protocol skills with Wireshark! Use the comment section below for posting your answers.

Of course I am running my lab fully dual-stacked, i.e., with IPv6 and legacy IP. On some switches the SDM template must be changed to be IPv6 capable such as sdm prefer dual-ipv4-and-ipv6 default .

Continue reading Wireshark Layer 2-3 pcap Analysis w/ Challenges (CCNP SWITCH)

OSPFv3 for IPv6 Lab: Cisco, Fortinet, Juniper, Palo Alto, Quagga

Similar to my test lab for OSPFv2, I am testing OSPFv3 for IPv6 with the following devices: Cisco ASA, Cisco Router, Fortinet FortiGate, Juniper SSG, Palo Alto, and Quagga Router. I am showing my lab network diagram and the configuration commands/screenshots for all devices. Furthermore, I am listing some basic troubleshooting commands. In the last section, I provide a Tcpdump/Wireshark capture of an initial OSPFv3 run.

I am not going into deep details of OSPFv3 at all. But this lab should give basic hints/examples for configuring OSPFv3 for all of the listed devices.

Continue reading OSPFv3 for IPv6 Lab: Cisco, Fortinet, Juniper, Palo Alto, Quagga

IPsec Site-to-Site VPN FortiGate <-> Cisco Router

This blog post shows how to configure a site-to-site IPsec VPN between a FortiGate firewall and a Cisco router. The FortiGate is configured via the GUI – the router via the CLI. I am showing the screenshots/listings as well as a few troubleshooting commands.

Continue reading IPsec Site-to-Site VPN FortiGate < -> Cisco Router

IPv4 vs. IPv6 Traffic Statistics on Routers

I am very interested in statistics about the usage of IPv6 on Internet routers and firewalls. The problem is, that most routers/firewalls do not have unique SNMP OIDs for IPv4 and IPv6 traffic, but only the normal incoming/outgoing packet counters per interface. Therefore I am using two independent ethernet ports and cables between my outer router and my first firewall, one for IPv4-only and the other one for IPv6-only traffic. Now I have independent statistics for each protocol and can combine them in one summary graph. (Though I know that this will never be a “best practice” solution…)

Continue reading IPv4 vs. IPv6 Traffic Statistics on Routers