Category Archives: Network

Computer networks over IPv4 and IPv6. Switching, Routing, and Firewalling.

Route- vs. Policy-Based VPN Tunnels

There are two methods of site-to-site VPN tunnels: route-based and policy-based. While some of you may already be familiar with this, some may have never heard of it. Some firewalls only implement one of these types, so you probably don’t have a chance to configure the other one anyway. Too bad since route-based VPNs have many advantages over policy-based ones which I will highlight here.

I had many situations in which network admins did not know the differences between those two methods and simply configured “some kind of” VPN tunnel regardless of any methodology. In this blogpost I am explaining the structural differences between them along with screenshots of common firewalls. I am explaining all advantages of route-based VPNs and listing a table comparing some firewalls regarding their VPN features.

Continue reading Route- vs. Policy-Based VPN Tunnels

FortiGate Out-of-Band Management

In some situations you want to manage your firewall only from a dedicated management network and not through any of the data interfaces. For example, when you’re running an internal data center with no Internet access at all but your firewalls must still be able to get updates from the Internet. In those situations you need a real out-of-band (OoB) management interface from which all management traffic (DNS, NTP, Syslog, Updates, RADIUS, …) is sourced and to which the admins can connect to via SSH/HTTPS. Another example is a distinct separation of data and management traffic. For example, some customers want any kind of management traffic to traverse through some other routing/firewall devices than their production traffic.

Unfortunately the Fortinet FortiGate firewalls don’t have a reasonable management port. Their so-called “MGMT” port is only able to limit the access of incoming traffic but is not able to source outgoing traffic by default. Furthermore, in an HA environment you need multiple ports to access the firewalls independently. What a mess.

A functional workaround is to add another VDOM solely for management. From this VDOM, all management traffic is sourced. To have access to all firewalls in a high availability environment, a second (!) interface within this management VDOM is necessary. Here we go:

Continue reading FortiGate Out-of-Band Management

Palo Alto Application: First Packets Will Pass!

I am using an almost hidden FTP server in my DMZ behind a Palo Alto Networks firewall. FTP is only allowed from a few static IP addresses, hence no brute-force attacks on my server. Furthermore, I have an “allow ping and traceroute from any to DMZ” policy since ping is no security flaw but really helpful while troubleshooting.

Now, here comes the point: My FTP server logfile showed dozens of connections from many different IP addresses from the Internet. WHAT? For the first moment I was really shocked. Have I accidentally exposed my FTP server to the Internet? Here is what happened:

Continue reading Palo Alto Application: First Packets Will Pass!

Discovering Policy-Based Routes with Layer 4 Traceroutes (LFT)

I already published a few examples how you can use layer four traceroutes in order to pass firewall policies that block ping but allow some well-known ports such as 80 or 443. Long story short: Using TCP SYN packets on an opened firewall port with the TTL trick will probably succeed compared to a classical traceroute based on ICMP echo-requests.

Another nice use case for layer 4 traceroutes is the recognition of policy based routes within your own network (or even beyond). That is: Depending on the TCP/UDP port used for the traceroute you can reveal which paths your packets take over the network. This is quite useful compared to classical traceroutes that only reveal the straightforward routing tables but not the policy based ones.

Continue reading Discovering Policy-Based Routes with Layer 4 Traceroutes (LFT)

True Random PSK Generator on a Raspi

In my previous blogpost I talked about the true random number generator (TRNG) within the Raspberry Pi. Now I am using it for a small online pre-shared key (PSK) generator at https://random.weberlab.de (IPv6-only) that you can use e.g. for site-to-site VPNs. Here are some details how I am reading the binary random data and how I built this small website.

Continue reading True Random PSK Generator on a Raspi

Yamaha R-N500 Network Receiver Packet Capture

Last but not least I was interested which “home-calling” connections my Yamaha R-N500 Network Receiver initiates. In my previous post I already analyzed the open ports within the network, while I showed a complete Apple AirPlay capture here. This time I was only interested in outgoing TCP/UDP connections to the Internet as well as how the Yamaha App “NP Controller” communicates with the receiver.

It turned out that it was not easy for me to fully analyze such a packet trace even though only a couple of connections were made. It consists of many protocols that I am not familiar with such as UPnP, MDNS, SSDP, and RTP. Anyway, ere we go:

Continue reading Yamaha R-N500 Network Receiver Packet Capture

Yamaha R-N500 Network Receiver Port Scan

During my analysis of Apple AirPlay connections to my Yamaha Network Receiver I was also interested in which TCP/UDP ports are opened on this audio device at all. Hence I did a basic port scan with Nmap for both transport layer protocols. (In an upcoming blogpost I am analyzing a packet capture from the Yamaha receiver which will show more details about the used ports and outgoing connections.) At first here are the Nmap results:

Continue reading Yamaha R-N500 Network Receiver Port Scan

Internet’s Noise

If you are following the daily IT news you have probably seen many articles claiming they have scanned the whole Internet for this or that. Indeed there are tools such as the ZMap Project “that enable researchers to perform large-scale studies of the hosts and services that compose the public Internet”.

This time I was not interested in scanning something, but in the question about “how many scans happen during one day on my home ISP connection?” Or in other words: What is the Internet background noise as seen by almost any customer? For this I sacrificed my Internet connection at home for 24 hours, while a factory-resetted router established a fresh Internet connection (IPv6 & IPv4) without any end devices behind it. No outgoing connections that could confuse or trigger any scans. That is: All incoming connections are really unsolicited and part of some third-party port scans, worm activities, or whatever. Using a network TAP device I captured these 24 hours and analyzed them with Wireshark.

In this blogpost I will present some stats about these incoming port scans. Furthermore I am publishing the pcap file so you can have a look at it by yourself.

Continue reading Internet’s Noise

My Network Companion: The ProfiShark

Since a couple of months I am carrying a ProfiShark 1G always with me. It’s a small network aggregation TAP that fits into my bag (unlike almost any other TAPs or switches with SPAN functionalities). It runs solely via USB 3.0, hence no additional power supply nor network port on my laptop is required to get it running.

In this post I’ll give some hints on how to use the ProfiShark 1G with Windows (read: some initial problems I had and how to solve them) as well as some use cases out of my daily work with it.

Continue reading My Network Companion: The ProfiShark

TROOPERS18: Dynamic IPv6 Prefix Problems and VPNs

Just a few days ago I gave a talk at Troopers 18 in Heidelberg, Germany, about the problems of dynamic (non-persistent) IPv6 prefixes, as well as IPv6 VPNs in general. Following are my slides and the video of the talk:

Continue reading TROOPERS18: Dynamic IPv6 Prefix Problems and VPNs

Signed DNS Zone with too long-living TTLs

Implementing DNSSEC for a couple of years now while playing with many different DNS options such as TTL values, I came around an error message from DNSViz pointing to possible problems when the TTL of a signed resource record is longer than the lifetime of the DNSSEC signature itself. Since I was not fully aware of this (and because I did not run into a real error over the last years) I wanted to test it more precisely.

Continue reading Signed DNS Zone with too long-living TTLs

DNSSEC KSK Emergency Rollover

In my last blogpost I showed how to perform a DNSSEC KSK rollover. I did it quite slowly and carefully. This time I am looking into an emergency rollover of the KSK. That is: What to do if your KSK is compromised and you must replace it IMMEDIATELY.

I am listing the procedures and commands I used to replace the KSK of my delegated subdomain dyn.weberdns.de with BIND. And as you might already suggest it, I am showing DNSViz graphs after every step since it greatly reveals the current DNSKEYs etc.

Continue reading DNSSEC KSK Emergency Rollover

DNSSEC KSK Key Rollover

Probably the most crucial part in a DNSSEC environment is the maintenance of the key-signing key, the KSK. You should rollover this key on a regular basis, though not that often as the zone signing keys, the ZSKs. I am doing a KSK rollover every 2 years.

In the following I will describe the two existing methods for a KSK rollover along with a step-by-step guide how I performed such a rollover for my zone “weberdns.de”. Of course again with many graphics from DNSViz (with “redundant edges”) that easily reveal the keys and signatures at a glance.

Note that this blogpost is NOT about the Root Zone KSK Rollover that appears in 2017/2018. It is merely about your OWN zone that is secured via DNSSEC.

Continue reading DNSSEC KSK Key Rollover