Category Archives: Memorandum

Posts with the category “Memo” contain no new stuff for the Internet community but provide some useful aggregations of information for certain IT related things.

Adding your NTP Server to the NTP Pool Project

You have a running NTP server with a static IP address? What about joining the NTP Pool project by adding your server to the pool? You will give something back to the Internet community and feel good about it. ;)

It doesn’t matter if you’re running a Raspberry Pi with GPS/DCF77 on your home, or a fully-featured NTP appliance such as the ones from Meinberg on your enterprise DMZ. Just a few clicks and your server will be used by the NTP Pool’s round-robin DNS. Here’s a simple tutorial:

Continue reading Adding your NTP Server to the NTP Pool Project

Monitoring a Meinberg LANTIME NTP Server

Monitoring a Meinberg LANTIME appliance is much easier than monitoring DIY NTP servers. Why? Because you can use the provided enterprise MIB and load it into your SNMP-based monitoring system. Great. The MIB serves many OIDs such as the firmware version, reference clock state, offset, client requests, and even more specific ones such as “correlation” and “field strength” in case of my phase-modulated DCF77 receiver (which is called “PZF” by Meinberg). And since the LANTIME is built upon Linux, you can use the well-known system and interfaces MIBs as well for basic coverage. Let’s dig into it:

Continue reading Monitoring a Meinberg LANTIME NTP Server

Monitoring a GPS NTP Server

Beyond monitoring Linux OS and basic NTP statistics of your stratum 1 GPS NTP server, you can get some more values from the GPS receiver itself, namely the number of satellites (active & in view) as well as the GPS fix and dilution of precision aka DOP. This brings a few more graphs and details. Nice. Let’s go:

Continue reading Monitoring a GPS NTP Server

Monitoring a DCF77 NTP Server

Now that you’re monitoring the Linux operating system as well as the NTP server basics, it’s interesting to have a look at some more details about the DCF77 receiver. Honestly, there is only one more variable that gives a few details, namely the Clock Status Word and its Event Field. At least you have one more graph in your monitoring system. ;)

Continue reading Monitoring a DCF77 NTP Server

Counting NTP Clients

Wherever you’re running an NTP server: It is really interesting to see how many clients are using it. Either at home, in your company or worldwide at the NTP Pool Project. The problem is that ntp itself does not give you this answer of how many clients it serves. There are the “monstats” and “mrulist” queries but they are not reliable at all since they are not made for this. Hence I had to take another path in order to count NTP clients for my stratum 1 NTP servers. Let’s dig in:

Continue reading Counting NTP Clients

Basic NTP Server Monitoring

Now that you have your own NTP servers up and running (such as some Raspberry Pis with external DCF77 or GPS times sources) you should monitor them appropriately, that is: at least their offset, jitter, and reach. From an operational/security perspective it is always good to have some historical graphs that show how any service behaves under normal circumstances to easily get an idea about a problem in case one occurs. With this post I am showing how to monitor your NTP servers for offset, jitter, reach, and traffic aka “NTP packets sent/received”.

Continue reading Basic NTP Server Monitoring

My IPv6/Routing/Cisco Lab Rack (2019)

My lab rack of 2019 consists of multiple Cisco routers and switches, as well as Juniper ScreenOS firewalls for routing purposes, a Palo Alto Networks firewall, a Juniper SRX firewall, a server for virtualization and some Raspberry Pis. That is: This rack can be used for basic Cisco courses such as CCNA or CCNP, or for even bigger BGP/OSPF or IPsec VPN scenarios since those ScreenOS firewalls are perfect routers as well. Of course, everything is IPv6 capable. Having some PoE-powered Raspberry Pis you can simulate basic client-server connections. A Juniper SA-2500 (aka Pulse Connect Secure) for remote accessing the Lab rounds things up.

I am just writing down a few thoughts on why I have “designed” the rack in that way. It’s basically a reminder for myself. ;)

Continue reading My IPv6/Routing/Cisco Lab Rack (2019)

NTP Authentication: Server Side

As already pointed out in my NTP intro blogpost Why should I run own NTP Servers? it is crucial to leverage NTP authentication to have the highest trustworthiness of your time distribution all over your network. Hence the first step is to enable NTP authentication on your own stratum 1 NTP servers, in my case two Raspberry Pis with DCF77/GPS reference clocks.

Continue reading NTP Authentication: Server Side

CLI Commands for Troubleshooting Infoblox

With Infoblox you’re almost doing everything through the WebUI on the Infoblox Grid Master. At least the daily business such as adding/changing/deleting/moving/whatever DNS, DHCP, and IPAM stuff. Even troubleshooting is almost done through this HTTPS-based GUI. However, some circumstances require the use of the CLI on an Infoblox appliance/VM, called “Remote Console Access” aka SSH. Here are the most common troubleshooting CLI commands for Infoblox DDI. Samples on how to use the IPMI/LOM features round things up:

Continue reading CLI Commands for Troubleshooting Infoblox

F5 BIG-IP Application Level NTP Health Checks

When configuring a pool of NTP servers on a F5 BIG-IP load balancer you need to choose how to check if they are still up and running. There is no specific NTP monitor on a F5 BIG-IP that does an application layer health check (like there is for http or radius). The out-of-the-box options that can be used are only ICMP and UDP monitoring. Let’s first look at the pros and cons of using either (or both) of these monitors. Then let’s build a custom UDP monitor that does a better job at checking whether the NTP servers are still healthy.

Continue reading F5 BIG-IP Application Level NTP Health Checks

Load Balancing NTP via F5 BIG-IP LTM

As you hopefully already know, you should use at least three different NTP servers to get your time. However, there might be situations in which you can configure only one single NTP server, either via static IP addresses or via an FQDN. To overcome this single point of failure you can use an external load balancing server such as F5 LTM (in HA of course) to forward your NTP queries to one of many NTP servers. Here are some hints:

Continue reading Load Balancing NTP via F5 BIG-IP LTM

NTP Server via GPS on a Raspberry Pi

This post shows how to use a GPS receiver with a Raspberry Pi to build a stratum 1 NTP server. I am showing how to solder and use the GPS module (especially with its PPS pin) and listing all Linux commands to set up and check the receiver and its NTP part, which is IPv6-only in my case. Some more hints to increase the performance of the server round things off. In summary this is a nice “do it yourself” project with a working stratum 1 NTP server at really low costs. Great. However, keep in mind that you should not rely on such projects in enterprise environments that are more focused on reliability and availability (which is not the case on self soldered modules and many config file edits).

Continue reading NTP Server via GPS on a Raspberry Pi

NTP Server via DCF77 on a Raspberry Pi

In this tutorial I will show how to set up a Raspberry Pi with a DCF77 receiver as an NTP server. Since the external radio clock via DCF77 is a stratum 0 source, the NTP server itself is stratum 1. I am showing how to connect the DCF77 module and I am listing all relevant commands as a step by step guide to install the NTP things. With this tutorial you will be able to operate your own stratum 1 NTP server. Nice DIY project. ;) However, keep in mind that you should only use it on a private playground and not on an enterprise network that should consist of high reliable NTP servers rather than DIY Raspberry Pis. Anyway, let’s go:

Continue reading NTP Server via DCF77 on a Raspberry Pi

Packet Capture: Network Time Protocol (NTP)

What’s the first step in a networker’s life if he wants to work with an unknown protocol: he captures and wiresharks it. ;) Following is a downloadable pcap in which I am showing the most common NTP packets such as basic client-server messages, as well as control and authenticated packets. I am also showing how to analyze the delta time with Wireshark, that is: how long an NTP server needs to respond to a request.

Continue reading Packet Capture: Network Time Protocol (NTP)