P1290829 Handstaubsauger featured image

Handstaubsauger Akkupack erneuert

Hier mal ein kleiner Do-it-Yourself Beitrag. Einfache Aufgabenstellung: Der Akkupack in unserem überlebensnotwendigem Handstaubsauger (AEG Junior 2.0) ist nach einigen Jahren faktisch nicht mehr zu gebrauchen. Ein neuer musste her. Und es stand natürlich fest, dass kein neuer Handstaubsauger, sondern nur ein neuer Akkupack da rein musste. Bei Reichelt fand ich schließlich etwas größere Akkus als die original verbauten, welche eine ordentliche Portion mehr an Leistung haben.

Continue reading Handstaubsauger Akkupack erneuert

Android ASA VPN featured image

Cisco ASA Remote Access VPN for Android

The native Android IPsec VPN client supports connections to the Cisco ASA firewall. This even works without the “AnyConnect for Mobile” license on the ASA. If only a basic remote access VPN connection is needed, this fits perfectly. It uses the classical IPsec protocol instead of the newer SSL version. However, the VPN tunnel works anyway.

In this short post I am showing the configuration steps on the ASA and on the Android phone in order to establish a remote access VPN tunnel.

Continue reading Cisco ASA Remote Access VPN for Android

Android Palo VPN featured image

Palo Alto Remote Access VPN for Android

For a basic remote access VPN connection to a Palo Alto Networks firewall (called “GlobalProtect”), the built-in VPN feature from Android can be used instead of the GlobalProtect app from Palo Alto itself. If the additional features such as HIP profiling are not needed, this variant fits perfectly.

I am showing a few screenshots and logs from the Android smartphone as well as from the Palo Alto to show the differences.

Continue reading Palo Alto Remote Access VPN for Android

IPv6 Dynamic Prefix Problems featured image

IPv6 Dyn Prefix Problems

I am lucky to have a full dual-stack ISP connection at home. However, the ISP only offers a dynamic IPv6 prefix with all of its disadvantages (while no single advantage). In this post, I am summarizing the limitations of a dynamic prefix and some of the ideas on how to overcome them. I am always comparing the “IPv6 dynamic prefix” state with the legacy “dynamic IPv4 address” situation. I suppose that some of these problems will hit many small office / home office locations during the next years.

Of course, IPv6 ISP connections with dynamic prefixes should only be purchased at private home sites. It is no problem to have new IPv6 addresses there because all connections are outbound. However, many small remote offices (SOHO) might rely on such cheap ISP connections, too. If they provide some servers in a DMZ or other components such as network cameras, building components with IPv6 connections, etc., they will run into these kind of problems.

Continue reading IPv6 Dyn Prefix Problems

IPv6 VPN Routing with Dyn Prefix featured image

IPv6 VPN Routing with Dynamic Prefixes

How to route traffic inside an IPv6 site-to-site VPN tunnel if one side offers only dynamic IPv6 prefixes? With IPv4, the private network segments were statically routed through the tunnel. But with a dynamic prefix, a static route is not possible. That is, a dynamic routing protocol must be used. Here is an example of how I used OSPFv3 for IPv6 between my VPN endpoints.

In detail, I have a home office with a dual stack ISP connection. However, this connection has a dynamic IPv6 prefix: After every reboot or lost connection of the firewall, I get a new IPv6 prefix. This is really bad for building a site-to-site VPN to the headquarter. Since I don’t want to use any kind of NAT/NPTv6 with unique local addresses, I am talking OSPFv3 over the VPN tunnel in order to route the dynamic prefix range (global unicast) via the tunnel.

Continue reading IPv6 VPN Routing with Dynamic Prefixes

Juniper DHCPv6-PD featured image

Juniper ScreenOS: DHCPv6 Prefix Delegation

The Juniper ScreenOS firewall is one of the seldom firewalls that implements DHCPv6 Prefix Delegation (DHCPv6-PD). It therefore fits for testing my dual stack ISP connection from Deutsche Telekom, Germany. (Refer to this post for details about this dual stack procedure.)

It was *really* hard to get the correct configuration in place. I was not able to do this by myself at all. Also Google did not help that much. Finally, I opened a case by Juniper to help me finding the configuration error. After four weeks of the opened case, I was told which command was wrong. Now it’s working. 😉 Here we go.

Continue reading Juniper ScreenOS: DHCPv6 Prefix Delegation

IPv6 Site-to-Site Reommendations featured image

IPv6 Site-to-Site VPN Recommendations

With global IPv6 routing, every single host has its own global unicast IPv6 address (GUA). No NAT anymore. No dirty tricks between hosts and routers. Great. Security is made merely by firewalls and policies. Site-to-site VPNs between partners can be build without address conflicts. Great again!

However, one problem to consider is the proper IPv6 routing via site-to-site VPNs since both sides now can reach each other even without a VPN. This was (mostly) not true with IPv4 in which both partners heavily relied on private RFC 1918 addresses that were not routable in the Internet. If specific IPv6 traffic should flow through a VPN but does actually traverse the Internet, it would be easy for a hacker to eavesdrop this traffic, leading to a security issue!

The following principles should be realized properly to assure that IPv6 traffic is never routed through the mere Internet when a site-to-site VPN tunnel is in place. Even in a failure of that tunnel. The principles can be applied to any IPv6 tunnels between partners, remote sites, home offices, etc., as long as the other site has its own global unicast IPv6 address space. (For VPNs in which a sub-prefix from the headquarters prefix is routed to a remote site, the situation behaves different. This article focuses on the routing between different IPv6 adress spaces.)

Continue reading IPv6 Site-to-Site VPN Recommendations

OSPFv3 Lab Featured Image

OSPFv3 for IPv6 Lab: Cisco, Fortinet, Juniper, Palo Alto, Quagga

Similar to my test lab for OSPFv2, I am testing OSPFv3 for IPv6 with the following devices: Cisco ASA, Cisco Router, Fortinet FortiGate, Juniper SSG, Palo Alto, and Quagga Router. I am showing my lab network diagram and the configuration commands/screenshots for all devices. Furthermore, I am listing some basic troubleshooting commands. In the last section, I provide a Tcpdump/Wireshark capture of an initial OSPFv3 run.

I am not going into deep details of OSPFv3 at all. But this lab should give basic hints/examples for configuring OSPFv3 for all of the listed devices.

Continue reading OSPFv3 for IPv6 Lab: Cisco, Fortinet, Juniper, Palo Alto, Quagga

OSPF Visualizer featured image 3

OSPF Visualizer

While reading the OSPF chapter in the Cisco CCNP ROUTE learning guide, I was interested in how to visualize an OSPF area. Since every router in the same area has a complete view of all routers and networks, it should be easy to draw a map. So, I searched through the web for this kind of OSPF plotter and found two different approaches. While none of them worked out of the box, I was able to run one of them with an additional software router (Quagga) inside my OSPF area which finally drew a map. Yeah. Here we go:

Continue reading OSPF Visualizer

Cisco ASA PBR - featured image

Policy Based Routing on a Cisco ASA

Cisco ASA 9.4 (and later) is now supporting Policy Based Routing. Yeah. Great news, since many customers are requesting something like “HTTP traffic to the left – VoIP traffic to the right”. Coming with a new Cisco ASA 5506-X I was happy to try the policy based routing feature.

The configuration steps through the ASDM GUI are not easy and full of errors, so I try to give some hints within this blog post.

Continue reading Policy Based Routing on a Cisco ASA

Palo Alto PBF w different VRs featured image

Policy Based Forwarding on a Palo Alto with different Virtual Routers

This guide is a little bit different to my other Policy Based Forwarding blog post because it uses different virtual routers for both ISP connections. This is quite common to have a distinct default route for both providers. So, in order to route certain traffic, e.g., http/https, to another ISP connection, policy based forwarding is used.

Continue reading Policy Based Forwarding on a Palo Alto with different Virtual Routers

ScreenOS PBF with VRs featured image

Policy-Based Routing on ScreenOS with different Virtual Routers

I already puslished a blog post concerning policy-based routing on a Juniper firewall within the same virtual router (VR). For some reasons, I was not able to configure PBR correctly when using multiple VRs. Now it works. 😉 So, here are the required steps:

Continue reading Policy-Based Routing on ScreenOS with different Virtual Routers

Palo Alto HA featured image

Palo Alto High Availability Heartbeat

Beside the HA1 and HA2 interfaces on a Palo Alto Networks firewall, there are the HA1/HA2 Backup and Heartbeat Backup options. I was a bit confused while reading the documentation of the high availability instructions since it did not clearly specify when and where to use the dedicated management port for what kind of “backup”.

Basically, it should read that there are two different ways on how to use the dedicated management for a HA Backup: the heartbeat backup OR the HA1 backup.

Continue reading Palo Alto High Availability Heartbeat


Roundcube Installation Guide

Roundcube is an email webclient which is easy and intuitive to use. I am using it for my private mails, connecting via IMAP and SMTP to my hoster. One of the great advantages is the “flag” option which is synchronized via IMAP to my Apple devices.

Following is a step-by-step installation guide for Roundcube plus an update scenario. It is a kind of “memo for myself”, but hopefully, others can use it as well.

Continue reading Roundcube Installation Guide

Hop Counts featured image

1&1 DSL Routing: Hop Counts unterschiedlich

Seit über einem Jahr zeichne ich die Anzahl der Hops von einer Reihe DSL-Anschlüssen auf (siehe hier). Mein Monitoring-Server läuft dabei hinter einem statischen Anschluss der Telekom, während die privaten Internetanschlüsse von diversen Anbietern (1&1, Kabel Deutschland, Telekom) kommen. Nun habe ich leider nicht im Detail die Ahnung davon, wie diese Anbieter ihren Traffic routen, zumindest scheint aber 1&1 irgendetwas Komisches bei sich verbaut zu haben, da sehr oft nach der nächtlichen Zwangstrennung ein deutlicher Unterschied in der Anzahl der Hops zu sehen ist.

Continue reading 1&1 DSL Routing: Hop Counts unterschiedlich